「12次元 超数理論:アインシュタインの夢(超弦理論の次元を超えて(仮)) 子供のための「数(次元)」ゲーム」

次元がつぶれるのは?
次元に隠された「数(APS素数)」は?
私の「12次元」!友達の「12次元」!家族の「12次元」!それが「運命数」=「APS素数」!)

あるルール(規則)により、つくられた「数」が異なる数の個数を「次元」の「数」とした。
(ルール(規則)は下で説明。)

アインシュタイン(1879年3月14日)の「誕生日の12次元」の「数」
「数」⇔「反転数(鏡の数)」
1.18790314⇔41309781
2.14031879⇔97813014
3.3141879⇔9781413
4.18791403⇔30419781
5.3187914⇔4197813
6.14187903⇔30978141
///////////////////////
「数」
///////////////////////







///////////////////////
「反転数(鏡の数)」
///////////////////////






///////////////////////
アインシュタイン(1879年3月14日)の「6つの数 (6 Number)シックスナンバー」

1.18790314
2.14031879
3.3141879
4.18791403
5.3187914
6.14187903

アインシュタイン(1879年3月14日)の「6つの反転数 (6 Inversion Number)シックス・インバージョン・ナンバー」

7.41309781
8.97813014
9.9781413
10.30419781
11.4197813
12.30978141

///////////////////////
///////////////////////
ルール(規則)

「6つの数(6 Number)シックスナンバー」の謎(なぞ)へ

「6つの数(6 Number)シックスナンバー」は、「年」、「月」、「日」から「数」をつくる。

1.「年月日」: (YYYY年MM月DD日)の「YYYYMMDD」の「数」を使います。(日本形式)(年→月→日)
2.「日月年」: (DD日MM月YYYY年)の「DDMMYYYY」の「数」を使います。(ヨーロッパ形式)(日→月→年)
3.「月日年」:(MM月DD日YYYY年)の「MMDDYYYY」の「数」を使います。(アメリカ形式)(月→日→年)
4.「年日月」:(YYYY年DD日MM月)の「YYYYDDMM」の「数」を使います。(「ある地域(国)」形式)(年→日→月)
5.「月年日」:(MM月YYYY年DD日)の「MMYYYYDD」の「数」を使います。(「天空の城」形式)(月→年→日)
6.「日年月」:(DD日YYYY年MM月)の「DDYYYYMM」の「数」を使います。(宇宙の形式)(日→年→月)
///////////////////////
「6つの反転数 (6 Inversion Number)シックス・インバージョン・ナンバー」の謎(なぞ)へ

「6つの数(6 Number)シックスナンバー」を逆から並べ直した「数」である。
例えば、
「16」⇔「61」
「123」⇔「321」
「3」⇔「3」
18790314⇔41309781
として、「数」をつくります。

7.「年月日」: (YYYY年MM月DD日)の「YYYYMMDD」の「数」を逆から並べ直した「反転数(鏡の数)」を使います。
8.「日月年」: (DD日MM月YYYY年)の「DDMMYYYY」の「数」を逆から並べ直した「反転数(鏡の数)」を使います。
9.「月日年」:(MM月DD日YYYY年)の「MMDDYYYY」の「数」を逆から並べ直した「反転数(鏡の数)」を使います。
10.「年日月」:(YYYY年DD日MM月)の「YYYYDDMM」の「数」を逆から並べ直した「反転数(鏡の数)」を使います。
11.「月年日」:(MM月YYYY年DD日)の「MMYYYYDD」の「数」を逆から並べ直した「反転数(鏡の数)」を使います。
12.「日年月」:(DD日YYYY年MM月)の「DDYYYYMM」の「数」を逆から並べ直した「反転数(鏡の数)」を使います。

///////////////////////
アインシュタイン(1879年3月14日)
「数」を「素因数分解」する。
12Number(12ナンバー)  

12Prime factorization(12個の素因数分解)


1.18790314=2 * 3 * 163 * 19213
2.14031879=3 * 1291 * 3623
3.3141879=3 * 13 * 13 * 6197
4.18791403=3 * 277 * 22613
5.3187914=2 * 3 * 41 * 12959
6.14187903=3 * 173 * 27337
7.41309781=3 * 19 * 724733
8.97813014=2 * 3 * 13 * 1254013
9.9781413=3 * 127 * 25673
10.30419781=3 * 7 * 233 * 6217
11.4197813=3 * 1399271
12.30978141=3 * 89 * 157 * 739

12NumberのGCD

///////////////////////
アインシュタイン(1879年3月14日)の場合
「数」→ 「APS素数」
12Number(12ナンバー)→ 12Prime(12プライム)

1.18790314→19213
2.14031879→3623
3.3141879→6197
4.18791403→22613
5.3187914→12959
6.14187903→27337
7.41309781→724733
8.97813014→1254013
9.9781413→25673
10.30419781→6217
11.4197813→1399271
12.30978141→739

///////////////////////
次元が下がる「例」

サムライ秀吉(1537年1月1日)の「誕生日の12次元」の「数」

1.15370101⇔10107351
2.1011537⇔7351101
3.1011537⇔7351101
4.15670101⇔10107351
5.1153701⇔1073511
6.1153701⇔1073511


6次元になる。
///////////////////////
6次元になるのは、どんな場合でしょうか?考えてみましょう。

0次元や1次元や2次元や3次元や4次元や5次元はあるのでしょうか?
6次元や7次元や8次元や9次元や10次元や11次元はあるのでしょうか?
(あの次元は、「ある」のです。「実験」して、みつけましょう。また、それを「分類」してみましょう。)
///////////////////////

秀吉サムライ(1537年1月1日)の「誕生日の12次元」は「誕生日の6次元」の「数」に!
 






///////////////////////
秀吉サムライ(1537年1月1日)の「誕生日の12次元」は「誕生日の6次元」の「数」に!

1.15370101→569263
2.1011537→1583
7.10107351→1699
8.7351101→272263
5.1153701→128189
9.1073511→659
///////////////////////
秀吉サムライ(1537年1月1日)の「誕生日の6次元」の「数」
を素因数分解した。

1.15370101=3 * 3 * 3 * 569263
2.1011537=3 * 3 * 71 * 1583
7.10107351=3 * 3 * 661 * 1699
8.7351101=3 * 3 * 3 * 272263
5.1153701=3 * 3 * 128189
9.1073511=3 * 3 * 181 * 659

///////////////////////


//////
「素数の宇宙の世界」 Dream of  G. Shimura? 

志村五郎先生「誕生日」の「素数の世界」
志村五郎 スケッチ700ss


数学の超難問「フェルマーの最終定理」の証明につながる予想を提唱した米プリンストン大名誉教授の志村五郎さん

 志村さんは整数論が専門。1950年代~60年代に、故谷山豊・東京大助教授と共に楕円(だえん)曲線の性質に関する「谷山=志村予想」を提唱。この予想を手がかりに、提示から350年以上数学者を悩ませてきた整数論の難問、フェルマーの最終定理が、英国のアンドリュー・ワイルズさんによって95年に証明された。
 
1930年 静岡県浜松に生まれる
1952年 東京大学理学部数学科卒業
1957年 パリ、ポアンカレ研究所『近代的整数論』(谷山豊との共著)
1958年 プリンストン高等研究所
1959年 東京大学助教授
1961年 大阪大学教授
1964年 プリンストン大学教授
(アメリカ在住、プリンストン大学名誉教授 専門は整数論)

 東大卒業後、同大助教授などを経て、64年から99年までプリンストン大教授を務めた。77年に米数学会「コール賞」、91年度に朝日賞を受賞。



志村五郎(1930年2月23日)
の「誕生日の12次元」の「数」
「数」⇔「反転数(鏡の数)」


1.19300223⇔32200391
2.23051930⇔3915032
3.2231930⇔391322
4.19302302⇔20320391
5.2193023⇔3203912
6.23193002⇔20039132

///////////////////////
志村五郎(1930年2月23日)の「6つの数 (6 Number)シックスナンバー」
1.19300223
2.23051930
3.2231930
4.19302302
5.2193023
6.23193002

志村五郎(1930年2月23日)の「6つの反転数 (6 Inversion Number)シックス・インバージョン・ナンバー」
7.32200391
8.3915032
9.391322
10.20320391
11.3203912
12.20039132
///////////////////////

すごい「素数」が存在する?
 
問1 志村五郎(1930年2月23日)の場合
「数」を「素因数分解」する。
12Number(12ナンバー)
12Prime factorization(12個の素因数分解)
1.19300223=
2.23051930=
3.2231930=
4.19302302=
5.2193023=
6.23193002=
7.32200391=
8.3915032=
9.391322=
10.20320391=
11.3203912=
12.20039132=
 
 
問A 志村五郎(1930年2月23日)の場合
「数」→ 「APS素数」
12Number(12ナンバー)→ 12Prime(12プライム)
1.19300223→ 
2.23051930→ 
3.2231930→ 
4.19302302→ 
5.2193023→ 
6.23193002→ 
7.32200391→ 
8.3915032→ 
9.391322→ 
10.20320391→ 
11.3203912→ 
12.20039132→ 
/////

//////
志村五郎 先生の 書籍 と 物語ss


谷山志村予想「フェルマーの最終定理」ss

フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、3 以上の自然数 n について、(xのn乗) + (yのn乗) = (zのn乗) となる自然数の組 (x, y, z) は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、フェルマーの死後360年経った1995年にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。
//////


【書名】「解決!フェルマーの最終定理 現代数論の軌跡」加藤和也著、日本評論社
( フェルマーの大定理が解けた!―オイラーからワイルズの証明まで (ブルーバックス) 足立恒雄著 新書 )
( フェルマーの大定理―整数論の源流 (ちくま学芸文庫) 足立恒雄著 )

1993年6月23日に、プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を宣言し、その後、証明の不備が見つかり、1年以上に苦考の末、1994年9月19日にその修正に成功したこの期間に、著者が証明の解説として数学セミナー読者向けに書いたものを集めたものである。厳密性はないが、極力丁寧に、正確に伝えようとする、著者の誠実さと、理解の深さが伝わってくる。原論文の 1. A. Wiles; Modular elliptic curves and Fermat's last theorem, 2. R. Taylor, A. Wiles; Ring theoretic properties of certain Heck algebras にも、整数論にも、非常に惹きつけられる内容だった。購入時にも読んだと思われるが、詳しく覚えていないところをみると、理解しようとはしていなかったのかもしれない。むろん、今回も十分な時間をかけて読んだとは言えないが。

以下は備忘録

「砂田利一『基本群とラプラシアン、幾何学における数論的方法』」(p.37)「ワイルス『ぼくは、フライとリベットの結果を知ったとき、風景が変化したことに気がついた。(中略)この時まで、フェルマの最終定理は、何千年間もそのまま決して解かれることがなく数学がほとんど注目することがない数論の他の[散発的かつ趣味的な]ある種の問題と同じようなものに見えていた。フライとリベットの結果によって、フェルマの最終定理は、数学が無視することのできない重要な問題の結果という形に変貌したのだ。(中略)ぼくにとって、そのことは、この問題がやがて解かれるであろうと言うことを意味していた』」(p.67)「清水英夫著『保型関数I, II, III』、志村五郎著『Introduction to the theory of automorophic functions』、Knapp『Elliptic curves』、河田敬義著『数論I, II, III』、藤崎源二郎・森田康夫・山本芳彦著『数論への出発』、上野健爾著『代数幾何学入門』、J.H.シルヴァーマン・J.テイト著(足立恒雄〔ほか〕訳)『楕円曲線論入門』、土井公二/三宅敏恒著『保型形式と整数論』、肥田晴三著『Elementary theory of L-functions and Eisenstein series』、吉田敬之著『保型形式論: ─現代整数論講義─』、N.コブリンツ著(上田勝〔ほか〕訳)『楕円曲線と保型形式』」(p.123,4)「田口雄一郎さんの手紙に『Deligne さんの家はこの道の始まりのところ、森の入り口にあります。Deligne さんといへども、森羅万象の真理の最奥に至る道のほんの入口のところにゐるに過ぎないといふ、これは自然による卓抜な比喩であると思われます。ところが、恐ろしいことに彼の子供たちは毎日この道を通って森のむかうの学校に通ってゐるらしいのです。』とありました。フェルマーからの350年は大進歩でしたが、人類が続いてゆけば、それは今後何千年の数学の序曲であり、何段も何段も自然の深奥への新しい段階があることでしょう。」(p.239)「ガウス『どのように美しい天文学上の発見も、高等整数論が与える喜びには及ばない』ヒルベルト『数論には古くからの問題でありながら、今日も未解決のものが少なくない。その意味で、多くの神秘を蔵する分野であるが、他方、そこで展開される類体論のような、世にも美しい理論がある』」(p.245)「岩澤健吉『代数体と、有限体上の一変数関数体は、どこまでも似ていると信じてよい』」(p.246)「志村五郎は『整数論いたる所ゼータ関数あり』と述べたが今その言葉に『ゼータ関数のある所 岩澤理論あり』と続けて考えたい」(p.261)『ゼータ関数のある所 肥田理論あり』ともいえる。

「フェルマーの最終定理」を理解したい人(参考 書籍紹介)

N.コブリンツ著(上田勝〔ほか〕訳)『楕円曲線と保型形式』
土井公二/三宅敏恒著『保型形式と整数論』
志村五郎著『Introduction to the theory of automorophic functions』
J.H.シルヴァーマン・J.テイト著(足立恒雄〔ほか〕訳)『楕円曲線論入門』
Knapp『Elliptic curves』
河田敬義著『数論I, II, III』
藤崎源二郎・森田康夫・山本芳彦著『数論への出発』
上野健爾著『代数幾何学入門』
肥田晴三著『Elementary theory of L-functions and Eisenstein series』
清水英夫著『保型関数I, II, III』
吉田敬之著『保型形式論: ─現代整数論講義─』
砂田利一著『基本群とラプラシアン、幾何学における数論的方法』

原論文の
 1. A. Wiles; Modular elliptic curves and Fermat's last theorem, 
 2. R. Taylor, A. Wiles; Ring theoretic properties of certain Heck algebras
(一部、数学では、一般向けでないものもあるので注意を)

論文集 (志村五郎)
Collected Papers. I: 1954-1965 (Hardcover ed.). Springer. (2002). ISBN 978-0-387-95406-6.
Collected Papers. II: 1967-1977 (Hardcover ed.). Springer. (2002). ISBN 978-0-387-95416-5.
Collected Papers. III: 1978-1988 (Hardcover ed.). Springer. (2003). ISBN 978-0-387-95417-2.
Collected Papers. IV: 1989-2001 (Hardcover ed.). Springer. (2003). ISBN 978-0-387-95418-9.
など

////// 
やや専門的内容
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/689.html

https://www.ms.u-tokyo.ac.jp/~abenori/conf/20150817.html

http://www.sci.kumamoto-u.ac.jp/~narita/ss2011_proceedings.pdf

http://ntw.sci.u-toyama.ac.jp/ss2017/

http://www.ist.aichi-pu.ac.jp/~tasaka/ss2018/index.html

https://core.ac.uk/download/pdf/42026066.pdf

ワイルズによるフェルマー予想の解決にも岩澤理論は大きな役割を果たした。 また、これ以外にも日本人数学者の結果が大きく寄与している。例えば、 肥田(晴三)の理論が有効に用いられたし、解決への道筋は谷山・志村予想を 経由するものであった。 
(世間では「谷山志村予想」だが、専門家の間では、「志村予想」である。)
/////


志村五郎 記憶の切繪図 鳥のように 700

志村五郎先生の書籍(1部)ss


「すべての楕円曲線は、モジュラーである」 
モジュラーの世界のイメージss
//////


あの頃 数学 整数論(志村理論)を知る 「数を読む」
////// 
//////

ワイルズによるフェルマー予想の解決にも岩澤理論は大きな役割を果たした。 また、これ以外にも日本人数学者の結果が大きく寄与している。例えば、 肥田(晴三)の理論が有効に用いられたし、解決への道筋は谷山・志村予想を 経由するものであった。 
 「谷山=志村予想」は、「志村予想」だった! 先生の「誠実さ、優しさ」
/////
以下、数学の学習テーマ?の計画?
「志村理論の研究」計画?

・・・・・・
整数論サマースクール「多重ゼータ値」
整数論サマースクール「楕円曲線とモジュラー形式の計算」
整数論サマースクール「保型形式のp進family入門」
整数論サマースクール「志村多様体とその応用」
整数論サマースクール 「非可換岩澤理論」
整数論サマースクール 「p 進簡約群の表現論入門」
整数論サマースクール 「Stark 予想」
整数論サマースクール 「保型形式のリフティング」
整数論サマースクール 「アーサー・セルバーグ跡公式入門」
整数論サマースクール 「l 進ガロア表現とガロア変形の整数論」
整数論サマースクール 「保型 L 函数」
整数論サマースクール 「種数の高い代数曲線と Abel 多様体」
整数論サマースクール 「Diophantine Equations」
整数論サマースクール 「Hilbert 保型形式」
整数論サマースクール 「基本群と Galois 表現」
整数論サマースクール 「岩澤理論」
整数論サマースクール 「概均質ベクトル空間」
整数論サマースクール 「ゼータ関数」
整数論サマースクール 「半整数ウェイトの保型形式」
整数論サマースクール 「代数群の整数論入門」
整数論サマースクール 「楕円曲線とその Arithmetic Moduli」
整数論サマースクール 「Siegel 保型形式入門」
整数論サマースクール 「Weil 表現入門」
整数論サマースクール 「等質空間と保型形式」
整数論サマースクール 「志村多様体と保型形式」
整数論サマースクール 「アイゼンシュタイン級数について」


・整数論全般
加藤 和也, 斎藤 毅, 黒川 信重, 数論1(Fermatの夢と類体論), 岩波.
黒川 信重, 斎藤 毅, 栗原 将人, 数論2(岩沢理論と保型形式), 岩波.

//////
<数学の女王 「整数論 」 >数学者・志村五郎はなぜ東大を去ったか? 丸山眞男~戦後進歩的知識人との決別の理由/志村理論の始まりは・・・「すべての楕円曲線はモジュラーである」

東大受験必読、数学者・志村五郎の遺した言葉 (ちくま学芸文庫 「数学をいかに使うか」(2010)「数学の好きな人のために」(2012)「数学で何が重要か」(2013) そして「数学をいかに教えるか」(2014) の4冊)
 

<数学 「整数論」の世界的権威> 300年来の超難問証明に貢献、志村五郎氏死去 (志村五郎先生のご冥福を、お祈りいたします。)
 

数学者(整数論) 志村五郎氏死去 (谷山志村予想とフェルマーの最終定理 300年来の超難問証明に貢献) 2019年 5月3日 

//////



https://www.youtube.com/watch?v=KjvFdzhn7Dc&list=PL6PDU-7OA2gdvu3jhxo1QABgR9SGeCkCb



////// 
//////

参考

感動!「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) 

数学 「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) 

京都 VSOPも感動! (谷山・志村予想 がカギ)350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) 

京都 VSOPも感動!「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) 
//////

////

京都賞 受賞記念講演 黒澤 明(思想・芸術部門映画・演劇)、アンドレ・ヴェイユ(基礎科学部門 受賞(数学 整数論・代数幾何学など))国立京都国際会館へ (大学の研究室 教授らとも、京大の友人とも)ame 

あの頃考えていたこと(学問編)メモvol.2  数学 整数論(志村理論)を知る 「数を読む」Jugem
 

あの頃考えていたこと(学問編)メモvol.1  数学 整数論(志村理論)を知る 「数を読む」 se
 

数学 整数論「素数の宇宙の世界」 Dream of G. Shimura? (志村理論:志村多様体・志村ゼータ関数・志村曲線・志村モデル・志村系リフト・・) 【今日の数学者】2月23日生 志村五郎 li
 

1993年6月23日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を宣言 fc2
 

1994年9月19日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を修正 li
 

1995年2月13日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明(完成)se
 

感動!数学の歴史 「350年の難問解決! フェルマーの最終定理」 1995年

//////

//////